Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Planta ; 259(1): 23, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108903

RESUMO

MAIN CONCLUSION: The ex vitro hairy root system from petioles of detached soybean leaves allows the functional validation of genes using classical transgenesis and CRISPR strategies (e.g., sgRNA validation, gene activation) associated with nematode bioassays. Agrobacterium rhizogenes-mediated root transformation has been widely used in soybean for the functional validation of target genes in classical transgenesis and single-guide RNA (sgRNA) in CRISPR-based technologies. Initial data showed that in vitro hairy root induction from soybean cotyledons and hypocotyls were not the most suitable strategies for simultaneous performing genetic studies and nematode bioassays. Therefore, an ex vitro hairy root system was developed for in planta screening of target molecules during soybean parasitism by root-knot nematodes (RKNs). Applying this method, hairy roots were successfully induced by A. rhizogenes from petioles of detached soybean leaves. The soybean GmPR10 and GmGST genes were then constitutively overexpressed in both soybean hairy roots and tobacco plants, showing a reduction in the number of Meloidogyne incognita-induced galls of up to 41% and 39%, respectively. In addition, this system was evaluated for upregulation of the endogenous GmExpA and GmExpLB genes by CRISPR/dCas9, showing high levels of gene activation and reductions in gall number of up to 58.7% and 67.4%, respectively. Furthermore, morphological and histological analyses of the galls were successfully performed. These collective data validate the ex vitro hairy root system for screening target genes, using classical overexpression and CRISPR approaches, directly in soybean in a simple manner and associated with nematode bioassays. This system can also be used in other root pathosystems for analyses of gene function and studies of parasite interactions with plants, as well as for other purposes such as studies of root biology and promoter characterization.


Assuntos
Glycine max , Nematoides , Animais , Glycine max/genética , RNA Guia de Sistemas CRISPR-Cas , Bioensaio , Cotilédone , Nematoides/genética
2.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430188

RESUMO

Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines expressing double-stranded RNA (dsRNA) molecules to trigger RNA interference-mediated gene silencing in CBW. Thus, we targeted three essential genes coding for chitin synthase 2, vitellogenin, and ecdysis-triggering hormone receptor. The stability of expressed dsRNAs was improved by designing a structured RNA based on a viroid genome architecture. We transformed cotton embryos by inserting a promoter-driven expression cassette that overexpressed the dsRNA into flower buds. The transgenic cotton plants were characterized, and positive PCR transformed events were detected with an average heritability of 80%. Expression of dsRNAs was confirmed in floral buds by RT-qPCR, and the T1 cotton plant generation was challenged with fertilized CBW females. After 30 days, data showed high mortality (around 70%) in oviposited yolks. In adult insects fed on transgenic lines, chitin synthase II and vitellogenin showed reduced expression in larvae and adults, respectively. Developmental delays and abnormalities were also observed in these individuals. Our data remark on the potential of transgenic cotton based on a viroid-structured dsRNA to control CBW.


Assuntos
Gorgulhos , Humanos , Animais , Gorgulhos/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Gossypium/genética , Gossypium/metabolismo , Vitelogeninas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
3.
Plants (Basel) ; 11(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297768

RESUMO

The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.

4.
Planta ; 256(4): 83, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112244

RESUMO

MAIN CONCLUSION: The overexpression of the GmGlb1-1 gene reduces plant susceptibility to Meloidogyne incognita. Non-symbiotic globin class #1 (Glb1) genes are expressed in different plant organs, have a high affinity for oxygen, and are related to nitric oxide (NO) turnover. Previous studies showed that soybean Glb1 genes are upregulated in soybean plants under flooding conditions. Herein, the GmGlb1-1 gene was identified in soybean as being upregulated in the nematode-resistant genotype PI595099 compared to the nematode-susceptible cultivar BRS133 during plant parasitism by Meloidogyne incognita. The Arabidopsis thaliana and Nicotiana tabacum transgenic lines overexpressing the GmGlb1-1 gene showed reduced susceptibility to M. incognita. Consistently, gall morphology data indicated that pJ2 nematodes that infected the transgenic lines showed developmental alterations and delayed parasitism progress. Although no significant changes in biomass and seed yield were detected, the transgenic lines showed an elongated, etiolation-like growth under well-irrigation, and also developed more axillary roots under flooding conditions. In addition, transgenic lines showed upregulation of some important genes involved in plant defense response to oxidative stress. In agreement, higher hydrogen peroxide accumulation and reduced activity of reactive oxygen species (ROS) detoxification enzymes were also observed in these transgenic lines. Thus, based on our data and previous studies, it was hypothesized that constitutive overexpression of the GmGlb1-1 gene can interfere in the dynamics of ROS production and NO scavenging, enhancing the acquired systemic acclimation to biotic and abiotic stresses, and improving the cellular homeostasis. Therefore, these collective data suggest that ectopic or nematode-induced overexpression, or enhanced expression of the GmGlb1-1 gene using CRISPR/dCas9 offers great potential for application in commercial soybean cultivars aiming to reduce plant susceptibility to M. incognita.


Assuntos
Arabidopsis , Tylenchoidea , Animais , Globinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glycine max/genética , Glycine max/metabolismo , Tylenchoidea/genética
5.
Plant Cell Rep ; 41(7): 1589-1601, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35665839

RESUMO

KEY MESSAGE: pGhERF105 and pGhNc-HARBI1 promoters are highly responsive to CBW infestation and exhibit strong activity in vegetative and reproductive tissues, increasing their potential application in GM crop plants for pest control. The main challenge to cotton (Gossypium hirsutum) crop productivity is the constant attack of several pests, including the cotton boll weevil (CBW, Anthonomus grandis), which uses cotton floral buds for feeding and egg-laying. The endophytic nature of the early developmental stages of CBW makes conventional pesticide-based control poorly efficient. Most biotechnological assets used for pest control are based on Bacillus thurigiensis insecticidal Cry toxins or the silencing of insect-pest essential genes using RNA-interference technology. However, suitable plant promoter sequences are required to efficiently drive insecticidal molecules to the target plant tissue. This study selected the Ethylene Responsive Factor 105 (GhERF105) and Harbinger transposase-derived nuclease (GhNc-HARBI1) genes based on available transcriptome-wide data from cotton plants infested by CBW larvae. The GhERF105 and GhNc-HARBI1 genes showed induction kinetics from 2 to 96 h under CBW's infestation in cotton floral buds, uncovering the potential application of their promoters. Therefore, the promoter regions (1,500 base pairs) were assessed and characterized using Arabidopsis thaliana transgenic plants. The pGhERF105 and pGhNc-HARBI1 promoters showed strong activity in plant vegetative (leaves and roots) and reproductive (flowers and fruits) tissues, encompassing higher GUS transcriptional activity than the viral-constitutive Cauliflower Mosaic Virus 35S promoter (pCaMV35S). Notably, pGhERF105 and pGhNc-HARBI1 promoters demonstrated more efficiency in driving reporter genes in flowers than other previously characterized cotton flower-specific promoters. Overall, the present study provides a new set of cotton promoters suitable for biotechnological application in cotton plants for pest resistance.


Assuntos
Arabidopsis , Gorgulhos , Animais , Arabidopsis/genética , Flores , Gossypium/genética , Controle de Pragas , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Gorgulhos/genética
6.
Plants (Basel) ; 11(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35567101

RESUMO

Understanding how plants cope with stress and the intricate mechanisms thereby used to adapt and survive environmental imbalances comprise one of the most powerful tools for modern agriculture. Interdisciplinary studies suggest that knowledge in how plants perceive, transduce and respond to abiotic stresses are a meaningful way to design engineered crops since the manipulation of basic characteristics leads to physiological remodeling for plant adaption to different environments. Herein, we discussed the main pathways involved in stress-sensing, signal transduction and plant adaption, highlighting biochemical, physiological and genetic events involved in abiotic stress responses. Finally, we have proposed a list of practice markers for studying plant responses to multiple stresses, highlighting how plant molecular biology, phenotyping and genetic engineering interconnect for creating superior crops.

7.
Exp Parasitol ; 238: 108246, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460697

RESUMO

Meloidogyne incognita is the most economically important species of the root-knot nematode complex causing damage to several crops worldwide. During parasitism in host plants, M. incognita secretes several effector proteins to suppress the plant immune system, manipulate the plant cell cycle, and promote parasitism. Several effector proteins have been identified, but their relationship with plant parasitism by M. incognita has not been fully confirmed. Herein, the Minc01696, Minc00344, and Minc00801 putative effector genes were evaluated to assess their importance during soybean and Nicotiana tabacum parasitism by M. incognita. For this study, we used in planta RNAi technology to overexpress dsRNA molecules capable of producing siRNAs that target and downregulate these nematode effector genes. Soybean composite roots and N. tabacum lines were successfully generated, and susceptibility level to M. incognita was evaluated. Consistently, both transgenic soybean roots and transgenic N. tabacum lines carrying the RNAi strategy showed reduced susceptibility to M. incognita. The number of galls per plant and the number of egg masses per plant were reduced by up to 85% in transgenic soybean roots, supported by the downregulation of effector genes in M. incognita during parasitism. Similarly, the number of galls per plant, the number of egg masses per plant, and the nematode reproduction factor were reduced by up to 83% in transgenic N. tabacum lines, which was also supported by the downregulation of the Minc00801 effector gene during parasitism. Therefore, our data indicate that all three effector genes can be a target in the development of new biotechnological tools based on the RNAi strategy in economically important crops for M. incognita control.


Assuntos
Doenças das Plantas , Tylenchoidea , Animais , Doenças das Plantas/prevenção & controle , Raízes de Plantas , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Glycine max/genética , Nicotiana/genética , Tylenchoidea/genética
8.
Planta ; 255(2): 44, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35050413

RESUMO

MAIN CONCLUSION: Minc03328 effector gene downregulation triggered by in planta RNAi strategy strongly reduced plant susceptibility to Meloidogyne incognita and suggests that Minc03328 gene is a promising target for the development of genetically engineered crops to improve plant tolerance to M. incognita. Meloidogyne incognita is the most economically important species of root-knot nematodes (RKN) and causes severe damage to crops worldwide. M. incognita secretes several effector proteins to suppress the host plant defense response, and manipulate the plant cell cycle and other plant processes facilitating its parasitism. Different secreted effector proteins have already been identified in M. incognita, but not all have been characterized or have had the confirmation of their involvement in nematode parasitism in their host plants. Herein, we characterized the Minc03328 (Minc3s00020g01299) effector gene, confirmed its higher expression in the early stages of M. incognita parasitism in plants, as well as the accumulation of the Minc03328 effector protein in subventral glands and its secretion. We also discuss the potential for simultaneous downregulation of its paralogue Minc3s00083g03984 gene. Using the in planta RNA interference strategy, Arabidopsis thaliana plants overexpressing double-stranded RNA (dsRNA) were generated to specifically targeting and downregulating the Minc03328 gene during nematode parasitism. Transgenic Minc03328-dsRNA lines that significantly downregulated Minc03328 gene expression during M. incognita parasitism were significantly less susceptible. The number of galls, egg masses, and [galls/egg masses] ratio were reduced in these transgenic lines by up to 85%, 90%, and 87%, respectively. Transgenic Minc03328-dsRNA lines showed the presence of fewer and smaller galls, indicating that parasitism was hindered. Overall, data herein strongly suggest that Minc03328 effector protein is important for M. incognita parasitism establishment. As well, the in planta Minc03328-dsRNA strategy demonstrated high biotechnological potential for developing crop species that could efficiently control RKN in the field.


Assuntos
Arabidopsis , Tylenchoidea , Animais , Arabidopsis/genética , Regulação para Baixo , Doenças das Plantas , Raízes de Plantas/genética
9.
Exp Parasitol ; 229: 108153, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34508716

RESUMO

Several economically important crops are susceptible to root-knot nematode (RKNs). Meloidogyne incognita and M. javanica are the two most reported species from the RKN complex, causing damage to several crops worldwide. The successful outcome of the Meloidogyne-plant interaction is associated with molecular factors secreted by the nematode to suppress the plant's immune response and promote nematode parasitism. In contrast, several plant factors are associated with defense against nematode infection. In this study, we identified and characterized the specific interaction of Minc00344 and Mj-NULG1a effectors with soybean GmHub10 (Glyma.19G008200) protein in vitro and in vivo. An Arabidopsis thaliana T-DNA mutant of AtHub10 (AT3G27960, an orthologous gene of GmHub10) showed higher susceptibility to M. incognita. Thus, since soybean and A. thaliana Hub10 proteins are involved in pollen tube growth and indirect activation of the defense response, our data suggest that effector-Hub10 interactions could be associated with an increase in plant susceptibility. These findings indicate the potential of these effector proteins to develop new biotechnological tools based on RNA interference and the overexpression of engineered Hub10 proteins for the efficient management of RKN in crops.


Assuntos
Glycine max/efeitos dos fármacos , Glycine max/parasitologia , Doenças das Plantas/parasitologia , Tylenchoidea/patogenicidade , Animais , Arabidopsis , Interações Hospedeiro-Parasita , Fenótipo , Filogenia , Domínios e Motivos de Interação entre Proteínas , Glycine max/classificação , Tylenchoidea/classificação , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/genética
10.
Front Plant Sci ; 11: 1228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903423

RESUMO

The first successful attempt to generate genetically modified plants expressing a transgene was preformed via T-DNA-based gene transfer employing Agrobacterium tumefaciens-mediated genetic transformation. Limitations over infectivity and in vitro tissue culture led to the development of other DNA delivery systems, such as the biolistic method. Herein, we developed a new one-step protocol for transgenic soybean recovery by combining the two different transformation methods. This protocol comprises the following steps: agrobacterial preparation, seed sterilization, soybean embryo excision, shoot-cell injury by tungsten-microparticle bombardment, A. tumefaciens-mediated transformation, embryo co-cultivation in vitro, and selection of transgenic plants. This protocol can be completed in approximately 30-40 weeks. The average efficiency of producing transgenic soybean germlines using this protocol was 9.84%, similar to other previously described protocols. However, we introduced a more cost-effective, more straightforward and shorter methodology for transgenic plant recovery, which allows co-cultivation and plant regeneration in a single step, decreasing the chances of contamination and making the manipulation easier. Finally, as a hallmark, our protocol does not generate plant chimeras, in contrast to traditional plant regeneration protocols applied in other Agrobacterium-mediated transformation methods. Therefore, this new approach of plant transformation is applicable for studies of gene function and the production of transgenic cultivars carrying different traits for precision-breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA